Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or goes beyond human cognitive capabilities across a wide variety of cognitive tasks. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly surpasses human cognitive capabilities. AGI is considered among the definitions of strong AI.
Creating AGI is a primary goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research and development projects throughout 37 nations. [4]
The timeline for accomplishing AGI remains a topic of continuous dispute among researchers and specialists. As of 2023, some argue that it might be possible in years or decades; others maintain it might take a century or longer; a minority think it may never be accomplished; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has actually revealed issues about the quick development towards AGI, recommending it might be accomplished quicker than many anticipate. [7]
There is argument on the specific meaning of AGI and relating to whether modern-day big language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical subject in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many specialists on AI have specified that alleviating the danger of human extinction presented by AGI needs to be an international priority. [14] [15] Others find the advancement of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is also referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or general intelligent action. [21]
Some scholastic sources reserve the term "strong AI" for computer programs that experience life or consciousness. [a] On the other hand, weak AI (or narrow AI) has the ability to fix one specific issue however does not have basic cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as humans. [a]
Related concepts include artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is far more normally smart than humans, [23] while the idea of transformative AI relates to AI having a big influence on society, for instance, similar to the farming or commercial revolution. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify five levels of AGI: emerging, competent, specialist, virtuoso, and superhuman. For instance, a qualified AGI is specified as an AI that outshines 50% of experienced grownups in a vast array of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified but with a limit of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. Among the leading proposals is the Turing test. However, there are other popular meanings, and some researchers disagree with the more popular methods. [b]
Intelligence traits
Researchers typically hold that intelligence is needed to do all of the following: [27]
reason, usage technique, fix puzzles, and make judgments under unpredictability
represent understanding, including sound judgment understanding
plan
find out
- interact in natural language
- if necessary, integrate these abilities in completion of any provided goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) consider extra traits such as creativity (the ability to form novel psychological images and ideas) [28] and autonomy. [29]
Computer-based systems that show a number of these abilities exist (e.g. see computational imagination, automated thinking, decision support group, robot, evolutionary calculation, smart representative). There is argument about whether modern-day AI systems possess them to an adequate degree.
Physical traits
Other capabilities are thought about desirable in smart systems, as they might affect intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and - the ability to act (e.g. relocation and control things, modification place to check out, and so on).
This consists of the ability to spot and react to risk. [31]
Although the capability to sense (e.g. see, hear, and so on) and the ability to act (e.g. move and manipulate items, modification place to check out, and so on) can be preferable for some smart systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that large language models (LLMs) might already be or end up being AGI. Even from a less positive point of view on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system is adequate, supplied it can process input (language) from the external world in location of human senses. This analysis aligns with the understanding that AGI has never been proscribed a particular physical personification and thus does not demand a capacity for locomotion or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to confirm human-level AGI have been thought about, consisting of: [33] [34]
The idea of the test is that the maker has to try and pretend to be a guy, by addressing concerns put to it, and it will just pass if the pretence is fairly persuading. A considerable part of a jury, who must not be professional about machines, must be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would require to implement AGI, since the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of problems that have been conjectured to need basic intelligence to fix as well as humans. Examples include computer system vision, natural language understanding, and handling unanticipated situations while fixing any real-world problem. [48] Even a specific task like translation needs a maker to check out and compose in both languages, follow the author's argument (factor), comprehend the context (understanding), and consistently recreate the author's original intent (social intelligence). All of these problems need to be fixed at the same time in order to reach human-level machine performance.
However, many of these jobs can now be carried out by modern-day large language designs. According to Stanford University's 2024 AI index, AI has reached human-level performance on many criteria for reading comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The very first generation of AI researchers were encouraged that artificial basic intelligence was possible which it would exist in simply a couple of years. [51] AI leader Herbert A. Simon wrote in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers believed they might create by the year 2001. AI leader Marvin Minsky was an expert [53] on the project of making HAL 9000 as reasonable as possible according to the consensus forecasts of the time. He said in 1967, "Within a generation ... the issue of creating 'expert system' will considerably be fixed". [54]
Several classical AI tasks, such as Doug Lenat's Cyc job (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it became obvious that scientists had actually grossly undervalued the problem of the project. Funding agencies became hesitant of AGI and put researchers under increasing pressure to produce useful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a table talk". [58] In action to this and the success of expert systems, both market and government pumped money into the field. [56] [59] However, confidence in AI stunningly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For the second time in twenty years, AI researchers who forecasted the imminent achievement of AGI had been misinterpreted. By the 1990s, AI scientists had a credibility for making vain guarantees. They became hesitant to make predictions at all [d] and prevented mention of "human level" artificial intelligence for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI achieved business success and scholastic respectability by concentrating on specific sub-problems where AI can produce verifiable results and commercial applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology industry, and research study in this vein is greatly funded in both academic community and industry. Since 2018 [upgrade], development in this field was thought about an emerging pattern, and a fully grown phase was expected to be reached in more than ten years. [64]
At the millenium, numerous traditional AI researchers [65] hoped that strong AI might be developed by integrating programs that resolve numerous sub-problems. Hans Moravec wrote in 1988:
I am confident that this bottom-up path to synthetic intelligence will one day meet the traditional top-down path more than half method, ready to provide the real-world skills and the commonsense understanding that has actually been so frustratingly evasive in reasoning programs. Fully smart devices will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:
The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are legitimate, then this expectation is hopelessly modular and there is actually only one practical route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we must even attempt to reach such a level, since it looks as if getting there would simply total up to uprooting our symbols from their intrinsic meanings (therefore merely decreasing ourselves to the practical equivalent of a programmable computer system). [66]
Modern synthetic basic intelligence research
The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to please objectives in a wide variety of environments". [68] This type of AGI, defined by the capability to maximise a mathematical meaning of intelligence rather than display human-like behaviour, [69] was also called universal synthetic intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of guest lecturers.
As of 2023 [update], a small number of computer system scientists are active in AGI research, and many add to a series of AGI conferences. However, progressively more researchers have an interest in open-ended knowing, [76] [77] which is the idea of allowing AI to constantly discover and innovate like human beings do.
Feasibility
As of 2023, the advancement and prospective achievement of AGI remains a subject of extreme debate within the AI neighborhood. While traditional agreement held that AGI was a far-off objective, current developments have actually led some researchers and industry figures to declare that early types of AGI may already exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a man can do". This forecast failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century due to the fact that it would require "unforeseeable and basically unforeseeable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between contemporary computing and human-level expert system is as broad as the gulf between existing space flight and practical faster-than-light spaceflight. [80]
A more challenge is the lack of clearness in specifying what intelligence involves. Does it need awareness? Must it show the capability to set objectives in addition to pursue them? Is it simply a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding needed? Does intelligence require explicitly reproducing the brain and its particular professors? Does it need emotions? [81]
Most AI researchers believe strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, but that the present level of development is such that a date can not accurately be forecasted. [84] AI experts' views on the expediency of AGI wax and wane. Four polls carried out in 2012 and 2013 recommended that the median quote amongst experts for when they would be 50% positive AGI would get here was 2040 to 2050, depending on the poll, with the mean being 2081. Of the professionals, 16.5% responded to with "never" when asked the very same question however with a 90% self-confidence rather. [85] [86] Further existing AGI development considerations can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year timespan there is a strong predisposition towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They evaluated 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists published an in-depth evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we believe that it could fairly be considered as an early (yet still insufficient) version of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of human beings on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of general intelligence has actually already been accomplished with frontier models. They wrote that unwillingness to this view originates from 4 primary factors: a "healthy uncertainty about metrics for AGI", an "ideological commitment to alternative AI theories or strategies", a "commitment to human (or biological) exceptionalism", or a "concern about the economic implications of AGI". [91]
2023 also marked the emergence of large multimodal designs (big language designs capable of processing or generating multiple methods such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of designs that "spend more time believing before they respond". According to Mira Murati, this ability to think before reacting represents a brand-new, extra paradigm. It enhances model outputs by spending more computing power when generating the answer, whereas the design scaling paradigm enhances outputs by increasing the model size, training data and training compute power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the company had attained AGI, stating, "In my viewpoint, we have actually currently accomplished AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than a lot of humans at most jobs." He likewise attended to criticisms that big language models (LLMs) merely follow predefined patterns, comparing their knowing process to the clinical approach of observing, assuming, and confirming. These statements have stimulated argument, as they rely on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show exceptional versatility, they might not totally fulfill this requirement. Notably, Kazemi's comments came shortly after OpenAI got rid of "AGI" from the terms of its partnership with Microsoft, prompting speculation about the company's strategic intentions. [95]
Timescales
Progress in expert system has actually historically gone through periods of fast development separated by periods when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to create space for further development. [82] [98] [99] For instance, the computer hardware readily available in the twentieth century was not adequate to execute deep learning, which needs big numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that estimates of the time required before a truly versatile AGI is constructed differ from ten years to over a century. As of 2007 [upgrade], the agreement in the AGI research neighborhood appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI researchers have actually offered a large range of viewpoints on whether development will be this rapid. A 2012 meta-analysis of 95 such opinions discovered a predisposition towards predicting that the start of AGI would take place within 16-26 years for contemporary and historic forecasts alike. That paper has actually been criticized for how it categorized viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the conventional method utilized a weighted sum of ratings from various pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the existing deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly readily available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old kid in first grade. A grownup comes to about 100 usually. Similar tests were brought out in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in performing lots of diverse jobs without particular training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to adhere to their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 different jobs. [110]
In 2023, Microsoft Research released a research study on an early version of OpenAI's GPT-4, competing that it exhibited more basic intelligence than previous AI models and showed human-level efficiency in jobs spanning numerous domains, such as mathematics, coding, and law. This research study sparked a dispute on whether GPT-4 might be considered an early, insufficient variation of synthetic general intelligence, stressing the need for additional expedition and examination of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The concept that this stuff might in fact get smarter than individuals - a couple of people thought that, [...] But many people thought it was way off. And I believed it was way off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise stated that "The progress in the last couple of years has actually been pretty amazing", and that he sees no reason that it would decrease, expecting AGI within a decade or even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would can passing any test at least as well as humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI employee, estimated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is thought about the most appealing path to AGI, [116] [117] entire brain emulation can work as an alternative approach. With entire brain simulation, a brain design is developed by scanning and mapping a biological brain in detail, and then copying and mimicing it on a computer system or another computational gadget. The simulation design must be sufficiently faithful to the initial, so that it acts in almost the exact same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has been gone over in synthetic intelligence research study [103] as a technique to strong AI. Neuroimaging innovations that might provide the essential comprehensive understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will end up being readily available on a similar timescale to the computing power required to replicate it.
Early estimates
For low-level brain simulation, a very effective cluster of computer systems or GPUs would be needed, given the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by their adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at various quotes for the hardware required to equal the human brain and adopted a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "computation" was comparable to one "floating-point operation" - a procedure utilized to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He used this figure to anticipate the required hardware would be readily available sometime between 2015 and 2025, if the exponential growth in computer system power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has established a particularly detailed and openly available atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The artificial nerve cell design assumed by Kurzweil and utilized in lots of existing synthetic neural network executions is easy compared with biological neurons. A brain simulation would likely need to capture the detailed cellular behaviour of biological neurons, currently comprehended only in broad outline. The overhead introduced by complete modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers a number of orders of magnitude larger than Kurzweil's estimate. In addition, the estimates do not account for glial cells, which are known to contribute in cognitive procedures. [125]
A fundamental criticism of the simulated brain approach stems from embodied cognition theory which asserts that human personification is an essential element of human intelligence and is needed to ground meaning. [126] [127] If this theory is appropriate, any completely practical brain design will require to include more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, however it is unknown whether this would suffice.
Philosophical viewpoint
"Strong AI" as defined in viewpoint
In 1980, thinker John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (only) act like it believes and has a mind and awareness.
The very first one he called "strong" since it makes a stronger statement: it presumes something unique has actually taken place to the maker that exceeds those abilities that we can check. The behaviour of a "weak AI" maker would be specifically similar to a "strong AI" machine, but the latter would likewise have subjective mindful experience. This usage is likewise common in scholastic AI research and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to indicate "human level artificial basic intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that consciousness is required for human-level AGI. Academic thinkers such as Searle do not believe that holds true, and to most expert system scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it actually has mind - undoubtedly, there would be no chance to tell. For AI research study, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have various significances, and some aspects play substantial roles in science fiction and the principles of synthetic intelligence:
Sentience (or "phenomenal consciousness"): The ability to "feel" understandings or emotions subjectively, instead of the ability to reason about understandings. Some theorists, such as David Chalmers, utilize the term "awareness" to refer solely to remarkable consciousness, which is approximately comparable to sentience. [132] Determining why and how subjective experience develops is referred to as the hard problem of consciousness. [133] Thomas Nagel described in 1974 that it "feels like" something to be conscious. If we are not conscious, then it does not feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had actually achieved sentience, though this claim was extensively challenged by other professionals. [135]
Self-awareness: To have mindful awareness of oneself as a separate individual, specifically to be knowingly knowledgeable about one's own ideas. This is opposed to simply being the "topic of one's believed"-an os or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the same method it represents whatever else)-but this is not what people normally indicate when they utilize the term "self-awareness". [g]
These qualities have a moral dimension. AI life would provide rise to concerns of well-being and legal security, similarly to animals. [136] Other aspects of awareness associated to cognitive capabilities are likewise pertinent to the principle of AI rights. [137] Determining how to integrate advanced AI with existing legal and social frameworks is an emerging concern. [138]
Benefits
AGI could have a large range of applications. If oriented towards such objectives, AGI might assist reduce numerous problems in the world such as appetite, hardship and illness. [139]
AGI could enhance performance and efficiency in a lot of jobs. For instance, in public health, AGI might speed up medical research, especially against cancer. [140] It might look after the elderly, [141] and equalize access to fast, top quality medical diagnostics. It could use fun, low-cost and individualized education. [141] The requirement to work to subsist might become obsolete if the wealth produced is correctly rearranged. [141] [142] This also raises the concern of the place of people in a drastically automated society.
AGI might also help to make rational decisions, and to expect and prevent disasters. It could likewise help to gain the benefits of possibly catastrophic technologies such as nanotechnology or climate engineering, while preventing the associated dangers. [143] If an AGI's main objective is to prevent existential catastrophes such as human termination (which might be tough if the Vulnerable World Hypothesis ends up being real), [144] it could take procedures to considerably decrease the risks [143] while reducing the impact of these measures on our lifestyle.
Risks
Existential threats
AGI may represent numerous kinds of existential threat, which are dangers that threaten "the early extinction of Earth-originating smart life or the permanent and extreme destruction of its capacity for desirable future advancement". [145] The risk of human extinction from AGI has actually been the topic of lots of arguments, however there is likewise the possibility that the advancement of AGI would cause a completely problematic future. Notably, it could be utilized to spread out and protect the set of worths of whoever establishes it. If humanity still has ethical blind spots comparable to slavery in the past, AGI may irreversibly entrench it, avoiding ethical development. [146] Furthermore, AGI might help with mass monitoring and indoctrination, which could be utilized to develop a steady repressive worldwide totalitarian regime. [147] [148] There is also a threat for the devices themselves. If makers that are sentient or otherwise worthy of ethical consideration are mass developed in the future, engaging in a civilizational course that forever disregards their well-being and interests could be an existential disaster. [149] [150] Considering just how much AGI might enhance mankind's future and help in reducing other existential risks, Toby Ord calls these existential risks "an argument for continuing with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI presents an existential risk for human beings, and that this danger needs more attention, is controversial however has been endorsed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, dealing with possible futures of incalculable advantages and threats, the professionals are certainly doing everything possible to guarantee the very best outcome, right? Wrong. If a superior alien civilisation sent us a message saying, 'We'll show up in a few years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is taking place with AI. [153]
The prospective fate of mankind has actually in some cases been compared to the fate of gorillas threatened by human activities. The contrast mentions that greater intelligence permitted mankind to dominate gorillas, which are now vulnerable in manner ins which they might not have actually anticipated. As a result, the gorilla has actually become a threatened types, not out of malice, but merely as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind and that we ought to be cautious not to anthropomorphize them and translate their intents as we would for people. He stated that individuals won't be "wise enough to develop super-intelligent devices, yet ridiculously silly to the point of giving it moronic goals with no safeguards". [155] On the other side, the principle of important merging recommends that nearly whatever their objectives, intelligent representatives will have factors to try to make it through and obtain more power as intermediary steps to accomplishing these objectives. Which this does not need having feelings. [156]
Many scholars who are concerned about existential threat supporter for more research study into solving the "control problem" to answer the concern: what types of safeguards, algorithms, or architectures can programmers implement to increase the probability that their recursively-improving AI would continue to act in a friendly, rather than devastating, manner after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could result in a race to the bottom of security precautions in order to release items before competitors), [159] and making use of AI in weapon systems. [160]
The thesis that AI can present existential risk also has critics. Skeptics normally state that AGI is unlikely in the short-term, or that concerns about AGI distract from other issues connected to existing AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for lots of people beyond the innovation industry, existing chatbots and LLMs are already viewed as though they were AGI, causing further misconception and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an illogical belief in a supreme God. [163] Some researchers think that the interaction projects on AI existential risk by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulatory capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and scientists, released a joint declaration asserting that "Mitigating the danger of termination from AI ought to be a worldwide concern together with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. labor force could have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of workers may see at least 50% of their tasks impacted". [166] [167] They consider workplace workers to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI might have a much better autonomy, ability to make choices, to interface with other computer system tools, but also to control robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of elegant leisure if the machine-produced wealth is shared, or many people can wind up badly bad if the machine-owners successfully lobby against wealth redistribution. Up until now, the pattern seems to be toward the 2nd choice, with innovation driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need governments to embrace a universal basic income. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain AI result AI security - Research area on making AI safe and helpful AI positioning - AI conformance to the desired goal A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated device learning - Process of automating the application of maker knowing BRAIN Initiative - Collaborative public-private research study effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General video game playing - Ability of artificial intelligence to play various games Generative synthetic intelligence - AI system capable of generating content in action to prompts Human Brain Project - Scientific research study project Intelligence amplification - Use of infotech to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured makers. Moravec's paradox. Multi-task knowing - Solving numerous device finding out tasks at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of synthetic intelligence. Transfer knowing - Artificial intelligence strategy. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specifically designed and optimized for artificial intelligence. Weak expert system - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the article Chinese room. ^ AI creator John McCarthy composes: "we can not yet identify in general what kinds of computational procedures we wish to call smart. " [26] (For a discussion of some meanings of intelligence used by synthetic intelligence scientists, see approach of expert system.). ^ The Lighthill report particularly slammed AI's "grandiose goals" and led the taking apart of AI research study in England. [55] In the U.S., DARPA ended up being figured out to fund only "mission-oriented direct research, instead of basic undirected research study". [56] [57] ^ As AI creator John McCarthy composes "it would be a fantastic relief to the rest of the workers in AI if the creators of brand-new general formalisms would express their hopes in a more guarded type than has in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a basic AI book: "The assertion that devices might potentially act wisely (or, perhaps much better, act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that makers that do so are in fact believing (rather than simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic general intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is producing artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were recognized as being active in 2020. ^ a b c "AI timelines: What do professionals in artificial intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and cautions of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The real threat is not AI itself but the method we deploy it. ^ "Impressed by synthetic intelligence? Experts say AGI is coming next, grandtribunal.org and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential risks to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that humanity requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI must be a global top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists alert of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing devices that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no factor to fear AI as an existential hazard. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the complete series of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on everyone to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart traits is based upon the subjects covered by major AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of difficult tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested checking an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software engineers prevented the term expert system for worry of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of device intelligence: Despite progress in device intelligence, artificial general intelligence is still a significant difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A study of professional viewpoint. In Fundamental issues of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as wise as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI twilight zone between narrow and general AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, but the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a happy medium in between narrow and general AI. ^ Quach, Katyanna. "A developer constructed an AI chatbot utilizing GPT-3 that helped a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 jobs, from playing video games to controlling robotics", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could equal human intelligence in 'just a few years,' says CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in current research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (estimated in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for interest by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, risks, methods (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that humans will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of artificial intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report warns". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard positioned however expert system can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, alert scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder states big tech is lying about AI termination danger". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: garagesale.es An early look at the labor market impact capacity of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers might see their tasks impacted by AI. These are the jobs most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal basic income due to the fact that 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Point of view, archived from the initial on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer programs that can solve problems and attain objectives on the planet along with people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - by means of ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system easy adequate to be easy to understand will not be made complex enough to act smartly, while any system complicated enough to behave intelligently will be too made complex to understand." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead easy stupid. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, obtained 25 July 2010. Gleick, James, "The Fate of Free Will" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from devices. For biological animals, reason and function come from acting on the planet and experiencing the repercussions. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who hope to get rich from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't depend on governments driven by project financing contributions [from tech companies] to press back.' ... Marcus details the needs that residents should make from their federal governments and the tech business. They include transparency on how AI systems work; settlement for people if their data [are] used to train LLMs (big language design) s and the right to consent to this use; and the capability to hold tech companies liable for the damages they cause by eliminating Section 230, imposing money penalites, and passing stricter product liability laws ... Marcus also recommends ... that a brand-new, AI-specific federal agency, akin to the FDA, the FCC, or the FTC, might supply the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... suggests ... develop [ing] a professional licensing regime for engineers that would operate in a similar way to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers also vowed to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stymied human beings for decades, reveals the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has revealed that although NLP (natural-language processing) designs can unbelievable feats, their capabilities are really much restricted by the amount of context they get. This [...] might trigger [troubles] for researchers who hope to use them to do things such as evaluate ancient languages. Sometimes, there are few historical records on long-gone civilizations to work as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to produce fake videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate reasonable videos produced utilizing expert system that in fact deceive people, then they barely exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, running in our media as counterfeited evidence. Their function better resembles that of cartoons, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to avoid humanizing machine-learning models utilized in scientific research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial general intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead cops to ignore contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test however revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at jobs that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared unable to reason rationally and tried to depend on its huge database of ... truths originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however undependable. Rules-based systems can not deal with circumstances their programmers did not expect. Learning systems are limited by the information on which they were trained. AI failures have actually already led to tragedy. Advanced auto-pilot features in vehicles, although they perform well in some situations, have actually driven vehicles without cautioning into trucks, concrete barriers, and and trucks. In the wrong situation, AI systems go from supersmart to superdumb in an immediate. When an enemy is attempting to manipulate and hack an AI system, the dangers are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new innovations however depend on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.