Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
L
lelespace
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 63
    • Issues 63
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • CI / CD
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Angelita Pina
  • lelespace
  • Issues
  • #16

Closed
Open
Opened Feb 18, 2025 by Angelita Pina@angelitapina74Maintainer
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with support knowing (RL) to improve reasoning ability. DeepSeek-R1 attains results on par with OpenAI's o1 design on numerous standards, including MATH-500 and SWE-bench.

DeepSeek-R1 is based upon DeepSeek-V3, a mix of experts (MoE) design just recently open-sourced by DeepSeek. This base model is fine-tuned utilizing Group Relative Policy Optimization (GRPO), a reasoning-oriented variation of RL. The research team also performed understanding distillation from DeepSeek-R1 to open-source Qwen and Llama designs and launched a number of versions of each; these designs outshine larger models, including GPT-4, on math and coding standards.

[DeepSeek-R1 is] the very first step toward enhancing language design thinking capabilities using pure reinforcement learning (RL). Our objective is to check out the potential of LLMs to develop reasoning abilities without any supervised data, concentrating on their self-evolution through a pure RL process...DeepSeek-R1 ... excels in a large range of tasks, consisting of innovative writing, general question answering, editing, summarization, and more. Additionally, DeepSeek-R1 demonstrates exceptional efficiency on tasks requiring long-context understanding, substantially exceeding DeepSeek-V3 on long-context standards.

To establish the model, DeepSeek began with DeepSeek-V3 as a base. They first tried fine-tuning it only with RL, and without any monitored fine-tuning (SFT), producing a design called DeepSeek-R1-Zero, which they have likewise launched. This design exhibits strong reasoning performance, however" powerful reasoning habits, it deals with a number of concerns. For example, DeepSeek-R1-Zero deals with obstacles like poor readability and language mixing."

To resolve this, the group utilized a short stage of SFT to prevent the "cold start" issue of RL. They gathered a number of thousand examples of chain-of-thought thinking to use in SFT of DeepSeek-V3 before running RL. After the RL process converged, they then gathered more SFT data using rejection sampling, leading to a dataset of 800k samples. This dataset was utilized for more fine-tuning and to produce the distilled models from Llama and Qwen.

DeepSeek assessed their model on a variety of thinking, mathematics, and coding criteria and compared it to other models, including Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 exceeded all of them on numerous of the standards, consisting of AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a couple of days of its release, the LMArena announced that DeepSeek-R1 was ranked # 3 total in the arena and # 1 in coding and mathematics. It was also tied for # 1 with o1 in "Hard Prompt with Style Control" classification.

Django structure co-creator Simon Willison blogged about his experiments with one of the DeepSeek distilled Llama models on his blog:

Each reaction begins with a ... pseudo-XML tag containing the chain of idea utilized to help create the reaction. [Given the timely] "a joke about a pelican and a walrus who run a tea room together" ... It then believed for 20 paragraphs before outputting the joke! ... [T] he joke is terrible. But the procedure of arriving was such an interesting insight into how these new models work.

Andrew Ng's newsletter The about DeepSeek-R1:

DeepSeek is quickly emerging as a strong home builder of open models. Not just are these designs terrific entertainers, however their license permits usage of their outputs for distillation, potentially pressing forward the cutting-edge for language designs (and multimodal models) of all sizes.

The DeepSeek-R1 designs are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This content remains in the AI, ML & Data Engineering subject

Related Topics:

- AI, forum.altaycoins.com ML & Data Engineering

  • Generative AI
  • Large language models

    - Related Editorial

    Related Sponsored Content

    - [eBook] Getting Going with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you all set to try out advanced technologies? You can start building intelligent apps with free Azure app, information, and AI services to minimize upfront expenses. Discover more.

    How could we improve? Take the InfoQ reader study

    Each year, we seek feedback from our readers to help us enhance InfoQ. Would you mind spending 2 minutes to share your feedback in our short study? Your feedback will straight help us continually evolve how we support you. The InfoQ Team Take the survey

    Related Content

    The InfoQ Newsletter

    A round-up of last week's content on InfoQ sent out every Tuesday. Join a community of over 250,000 senior developers.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
Reference: angelitapina74/lelespace#16