Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
L
lelespace
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 63
    • Issues 63
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • CI / CD
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Angelita Pina
  • lelespace
  • Issues
  • #4

Closed
Open
Opened Feb 08, 2025 by Angelita Pina@angelitapina74Maintainer
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library created to assist in the development of support learning algorithms. It aimed to standardize how environments are defined in AI research, making published research more quickly reproducible [24] [144] while providing users with a basic interface for connecting with these environments. In 2022, new advancements of Gym have actually been transferred to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, wiki.lafabriquedelalogistique.fr Gym Retro is a platform for reinforcement knowing (RL) research study on video games [147] utilizing RL algorithms and study generalization. Prior RL research focused mainly on optimizing representatives to solve single jobs. Gym Retro provides the ability to generalize in between games with comparable principles however various looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic agents initially lack knowledge of how to even stroll, however are offered the objectives of learning to move and to press the opposing representative out of the ring. [148] Through this adversarial learning process, the representatives learn how to adjust to altering conditions. When a representative is then removed from this virtual environment and positioned in a brand-new virtual environment with high winds, the representative braces to remain upright, recommending it had found out how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors in between representatives could create an intelligence "arms race" that could increase an agent's capability to work even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a group of 5 OpenAI-curated bots used in the competitive five-on-five video game Dota 2, that find out to play against human players at a high skill level entirely through trial-and-error ratemywifey.com algorithms. Before becoming a group of 5, the first public presentation occurred at The International 2017, the yearly best champion competition for the game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live one-on-one match. [150] [151] After the match, CTO Greg Brockman explained that the bot had found out by playing against itself for two weeks of actual time, which the knowing software application was a step in the instructions of producing software that can manage complicated jobs like a cosmetic surgeon. [152] [153] The system utilizes a kind of reinforcement learning, as the bots learn in time by playing against themselves numerous times a day for months, and are rewarded for actions such as eliminating an enemy and taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a complete group of 5, and they were able to beat teams of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against professional gamers, but wound up losing both games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the ruling world champs of the video game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' last public appearance came later that month, where they played in 42,729 overall video games in a four-day open online competitors, winning 99.4% of those video games. [165]
OpenAI 5's systems in Dota 2's bot gamer reveals the challenges of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has demonstrated making use of deep reinforcement knowing (DRL) representatives to attain superhuman skills in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses machine learning to train a Shadow Hand, a human-like robotic hand, to manipulate physical items. [167] It discovers completely in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI dealt with the item orientation issue by utilizing domain randomization, a simulation technique which exposes the student to a range of experiences rather than attempting to fit to reality. The set-up for Dactyl, aside from having movement tracking cams, likewise has RGB cameras to permit the robotic to manipulate an arbitrary item by seeing it. In 2018, OpenAI revealed that the system was able to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl might solve a Rubik's Cube. The robotic had the ability to fix the puzzle 60% of the time. Objects like the Rubik's Cube present intricate physics that is harder to model. OpenAI did this by improving the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation technique of creating gradually harder environments. ADR differs from manual domain randomization by not requiring a human to specify randomization ranges. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing brand-new AI designs developed by OpenAI" to let developers contact it for "any English language AI task". [170] [171]
Text generation

The business has actually promoted generative pretrained transformers (GPT). [172]
OpenAI's initial GPT model ("GPT-1")

The original paper on generative pre-training of a transformer-based language design was composed by Alec Radford and his coworkers, and released in preprint on OpenAI's site on June 11, 2018. [173] It revealed how a generative model of language could obtain world knowledge and procedure long-range dependences by pre-training on a diverse corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language design and the follower to OpenAI's initial GPT model ("GPT-1"). GPT-2 was revealed in February 2019, with only limited demonstrative variations at first released to the general public. The full variation of GPT-2 was not instantly released due to issue about prospective abuse, consisting of applications for composing fake news. [174] Some experts revealed uncertainty that GPT-2 posed a substantial danger.

In response to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to detect "neural phony news". [175] Other scientists, such as Jeremy Howard, warned of "the innovation to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be difficult to filter". [176] In November 2019, OpenAI launched the total version of the GPT-2 language model. [177] Several websites host interactive demonstrations of various circumstances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose students, highlighted by GPT-2 attaining advanced precision and perplexity on 7 of 8 zero-shot jobs (i.e. the design was not further trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It avoids certain issues encoding vocabulary with word tokens by utilizing byte pair encoding. This allows representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a without supervision transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI mentioned that the complete version of GPT-3 contained 175 billion criteria, [184] two orders of magnitude larger than the 1.5 billion [185] in the full version of GPT-2 (although GPT-3 designs with as couple of as 125 million criteria were likewise trained). [186]
OpenAI mentioned that GPT-3 prospered at certain "meta-learning" jobs and might generalize the purpose of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer learning in between English and Romanian, and in between English and German. [184]
GPT-3 considerably improved benchmark results over GPT-2. OpenAI cautioned that such scaling-up of language designs might be approaching or experiencing the fundamental ability constraints of predictive language models. [187] Pre-training GPT-3 needed a number of thousand petaflop/s-days [b] of calculate, compared to tens of petaflop/s-days for the complete GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained design was not instantly launched to the general public for issues of possible abuse, although OpenAI prepared to enable gain access to through a paid cloud API after a two-month complimentary private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified solely to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has actually in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in private beta. [194] According to OpenAI, the model can produce working code in over a dozen shows languages, mediawiki.hcah.in most successfully in Python. [192]
Several problems with problems, design defects and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has actually been accused of giving off copyrighted code, without any author attribution or license. [197]
OpenAI revealed that they would discontinue support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They revealed that the updated technology passed a simulated law school bar test with a rating around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might also read, examine or create as much as 25,000 words of text, and write code in all significant programs languages. [200]
Observers reported that the model of ChatGPT utilizing GPT-4 was an enhancement on the previous GPT-3.5-based version, with the caveat that GPT-4 retained a few of the problems with earlier modifications. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has actually declined to expose various technical details and data about GPT-4, such as the accurate size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained advanced outcomes in voice, multilingual, and vision standards, setting new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) standard compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be especially useful for enterprises, start-ups and developers seeking to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini designs, which have actually been developed to take more time to think of their responses, resulting in higher precision. These designs are especially efficient in science, coding, and reasoning jobs, and were made available to ChatGPT Plus and Team members. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3

On December 20, 2024, OpenAI revealed o3, the follower of the o1 thinking model. OpenAI also unveiled o3-mini, a lighter and quicker variation of OpenAI o3. As of December 21, 2024, this design is not available for public use. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security scientists had the chance to obtain early access to these models. [214] The model is called o3 rather than o2 to avoid confusion with telecoms providers O2. [215]
Deep research

Deep research is a representative developed by OpenAI, revealed on February 2, 2025. It leverages the abilities of OpenAI's o3 design to carry out extensive web browsing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools enabled, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to examine the semantic similarity in between text and images. It can significantly be used for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that develops images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to analyze natural language inputs (such as "a green leather handbag formed like a pentagon" or "an isometric view of an unfortunate capybara") and produce matching images. It can produce pictures of reasonable things ("a stained-glass window with a picture of a blue strawberry") in addition to items that do not exist in truth ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI revealed DALL-E 2, an updated version of the design with more sensible outcomes. [219] In December 2022, OpenAI published on GitHub software for Point-E, a brand-new rudimentary system for converting a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more powerful model much better able to produce images from complex descriptions without manual prompt engineering and render intricate details like hands and text. [221] It was released to the public as a ChatGPT Plus function in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can generate videos based on short detailed triggers [223] in addition to extend existing videos forwards or in reverse in time. [224] It can produce videos with resolution up to 1920x1080 or 1080x1920. The optimum length of generated videos is unknown.

Sora's development team named it after the Japanese word for "sky", to signify its "endless innovative potential". [223] Sora's innovation is an adjustment of the technology behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos along with copyrighted videos licensed for that function, however did not reveal the number or the specific sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the public on February 15, 2024, stating that it could produce videos up to one minute long. It likewise shared a technical report highlighting the techniques utilized to train the design, and the model's capabilities. [225] It acknowledged some of its imperfections, including battles mimicing complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "remarkable", but kept in mind that they should have been cherry-picked and may not represent Sora's common output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demonstration, noteworthy entertainment-industry figures have revealed substantial interest in the innovation's potential. In an interview, actor/filmmaker Tyler Perry expressed his awe at the technology's ability to produce realistic video from text descriptions, citing its potential to revolutionize storytelling and material production. He said that his enjoyment about Sora's possibilities was so strong that he had chosen to stop briefly strategies for broadening his Atlanta-based motion picture studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment model. [228] It is trained on a large dataset of varied audio and is also a design that can carry out multilingual speech acknowledgment as well as speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 designs. According to The Verge, a song generated by MuseNet tends to begin fairly but then fall under mayhem the longer it plays. [230] [231] In popular culture, initial applications of this tool were utilized as early as 2020 for the internet mental thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a snippet of lyrics and outputs song samples. OpenAI specified the tunes "reveal regional musical coherence [and] follow conventional chord patterns" however acknowledged that the songs do not have "familiar larger musical structures such as choruses that duplicate" which "there is a considerable space" between Jukebox and human-generated music. The Verge specified "It's highly outstanding, even if the outcomes sound like mushy variations of songs that may feel familiar", while Business Insider mentioned "surprisingly, a few of the resulting tunes are catchy and sound legitimate". [234] [235] [236]
User interfaces

Debate Game

In 2018, OpenAI launched the Debate Game, which teaches makers to discuss toy problems in front of a human judge. The function is to research study whether such an approach may assist in auditing AI decisions and in developing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every significant layer and nerve cell of 8 neural network designs which are often studied in interpretability. [240] Microscope was produced to analyze the functions that form inside these neural networks easily. The designs consisted of are AlexNet, VGG-19, different variations of Inception, and various versions of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is a synthetic intelligence tool built on top of GPT-3 that supplies a conversational interface that permits users to ask concerns in natural language. The system then responds with a response within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
Reference: angelitapina74/lelespace#4