DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion parameters to construct, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled versions of the models too.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that uses support finding out to enhance reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial identifying function is its support learning (RL) step, which was utilized to refine the model's reactions beyond the standard pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adapt more efficiently to user feedback and goals, ultimately enhancing both importance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, meaning it's equipped to break down complex inquiries and factor through them in a detailed way. This assisted thinking process permits the design to produce more precise, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT abilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has recorded the market's attention as a flexible text-generation design that can be incorporated into different workflows such as agents, logical thinking and information analysis jobs.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion parameters, enabling effective reasoning by routing inquiries to the most relevant specialist "clusters." This method allows the design to concentrate on various problem domains while maintaining overall performance. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 design to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient models to mimic the behavior and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as a teacher design.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest releasing this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent hazardous material, and examine designs against essential safety requirements. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to different use cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limit increase, develop a limit boost request and reach out to your account team.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Establish approvals to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to introduce safeguards, avoid damaging content, and assess designs against key security requirements. You can carry out safety measures for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to assess user inputs and model reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic flow involves the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas show reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 design.
The design detail page supplies vital details about the model's capabilities, pricing structure, and execution guidelines. You can discover detailed use guidelines, including sample API calls and code snippets for integration. The model supports various text generation tasks, including material creation, code generation, and concern answering, utilizing its support discovering optimization and CoT reasoning abilities.
The page also consists of implementation alternatives and licensing details to help you begin with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, pick Deploy.
You will be prompted to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of instances, get in a variety of instances (in between 1-100).
6. For example type, pick your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can configure innovative security and facilities settings, consisting of virtual personal cloud (VPC) networking, service role approvals, and encryption settings. For the majority of use cases, the default settings will work well. However, for production implementations, you might wish to examine these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin utilizing the design.
When the implementation is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in playground to access an interactive user interface where you can experiment with various prompts and change model parameters like temperature and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for ideal results. For instance, content for reasoning.
This is an exceptional way to explore the design's thinking and text generation capabilities before integrating it into your applications. The playground provides instant feedback, helping you understand how the model responds to different inputs and letting you fine-tune your prompts for ideal results.
You can quickly check the design in the play area through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning using guardrails with the DeepSeek-R1 endpoint
The following code example shows how to perform reasoning utilizing a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures inference parameters, and sends a request to generate text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses two convenient approaches: utilizing the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both methods to assist you choose the approach that best matches your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The model web browser shows available models, with details like the supplier name and model capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each model card reveals essential details, consisting of:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if relevant), indicating that this model can be registered with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the design
5. Choose the design card to view the design details page.
The model details page consists of the following details:
- The model name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab consists of essential details, such as:
- Model description. - License details.
- Technical requirements.
- Usage guidelines
Before you release the design, it's advised to evaluate the design details and license terms to confirm compatibility with your use case.
6. Choose Deploy to continue with deployment.
7. For Endpoint name, utilize the automatically generated name or produce a custom-made one.
- For Instance type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
- For wiki.myamens.com Initial instance count, enter the number of circumstances (default: 1). Selecting appropriate instance types and counts is vital for expense and performance optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is chosen by default. This is enhanced for sustained traffic and low latency.
- Review all setups for accuracy. For this model, we highly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to deploy the design.
The implementation procedure can take several minutes to finish.
When release is complete, your endpoint status will alter to InService. At this moment, the model is prepared to accept inference demands through the endpoint. You can monitor the release progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the implementation is complete, you can invoke the model using a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the required AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for releasing the model is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and implement it as shown in the following code:
Clean up
To avoid undesirable charges, complete the steps in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you deployed the model using Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace implementations. - In the Managed deployments section, find the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the appropriate release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business develop innovative solutions using AWS services and accelerated compute. Currently, he is concentrated on developing techniques for fine-tuning and enhancing the inference performance of big language designs. In his totally free time, Vivek enjoys hiking, watching motion pictures, and attempting various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing solutions that assist clients accelerate their AI journey and unlock service worth.