Artificial General Intelligence
Artificial basic intelligence (AGI) is a type of artificial intelligence (AI) that matches or goes beyond human cognitive capabilities throughout a large range of cognitive jobs. This contrasts with narrow AI, which is limited to particular tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly exceeds human cognitive abilities. AGI is considered one of the meanings of strong AI.
Creating AGI is a main goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study recognized 72 active AGI research study and advancement tasks across 37 countries. [4]
The timeline for accomplishing AGI stays a subject of continuous dispute among scientists and professionals. Since 2023, some argue that it might be possible in years or years; others preserve it might take a century or longer; a minority think it may never ever be achieved; and another minority claims that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has revealed concerns about the rapid development towards AGI, suggesting it could be achieved quicker than numerous anticipate. [7]
There is dispute on the specific definition of AGI and concerning whether modern-day big language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many specialists on AI have specified that mitigating the danger of human termination positioned by AGI must be a worldwide top priority. [14] [15] Others find the development of AGI to be too remote to provide such a danger. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or general smart action. [21]
Some academic sources schedule the term "strong AI" for computer system programs that experience life or awareness. [a] In contrast, weak AI (or narrow AI) is able to resolve one particular problem however lacks basic cognitive abilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as human beings. [a]
Related principles include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical type of AGI that is a lot more typically intelligent than humans, [23] while the idea of transformative AI relates to AI having a large impact on society, for example, comparable to the farming or industrial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify five levels of AGI: emerging, proficient, specialist, virtuoso, and superhuman. For example, a proficient AGI is defined as an AI that outshines 50% of knowledgeable adults in a wide variety of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified however with a threshold of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. Among the leading proposals is the Turing test. However, there are other widely known meanings, and some researchers disagree with the more popular techniques. [b]
Intelligence characteristics
Researchers generally hold that intelligence is needed to do all of the following: [27]
factor, use technique, fix puzzles, orcz.com and make judgments under unpredictability
represent understanding, including good sense knowledge
strategy
find out
- interact in natural language
- if required, incorporate these abilities in conclusion of any given objective
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) think about additional traits such as imagination (the capability to form unique mental images and principles) [28] and autonomy. [29]
Computer-based systems that show much of these capabilities exist (e.g. see computational creativity, automated reasoning, choice support group, robotic, evolutionary calculation, intelligent representative). There is argument about whether modern AI systems have them to an adequate degree.
Physical characteristics
Other capabilities are thought about desirable in smart systems, as they may affect intelligence or help in its expression. These include: [30]
- the ability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. relocation and control objects, change area to explore, and so on).
This consists of the capability to detect and react to risk. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and manipulate items, change place to explore, and so on) can be preferable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) might currently be or become AGI. Even from a less positive viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in location of human senses. This analysis aligns with the understanding that AGI has never ever been proscribed a specific physical embodiment and thus does not demand a capacity for locomotion or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to verify human-level AGI have actually been thought about, consisting of: [33] [34]
The idea of the test is that the maker needs to attempt and pretend to be a man, by answering questions put to it, and it will only pass if the pretence is fairly convincing. A considerable portion of a jury, who should not be skilled about machines, should be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would need to execute AGI, since the solution is beyond the capabilities of a purpose-specific algorithm. [47]
There are many problems that have actually been conjectured to need general intelligence to fix as well as people. Examples consist of computer vision, natural language understanding, and dealing with unforeseen circumstances while resolving any real-world problem. [48] Even a specific task like translation requires a maker to check out and write in both languages, follow the author's argument (factor), understand the context (knowledge), and faithfully reproduce the author's original intent (social intelligence). All of these problems need to be fixed at the same time in order to reach human-level machine efficiency.
However, a lot of these jobs can now be performed by contemporary big language models. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on numerous benchmarks for reading comprehension and visual thinking. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The first generation of AI researchers were encouraged that artificial basic intelligence was possible which it would exist in simply a few decades. [51] AI leader Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a man can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could create by the year 2001. AI leader Marvin Minsky was a consultant [53] on the job of making HAL 9000 as realistic as possible according to the consensus predictions of the time. He stated in 1967, "Within a generation ... the issue of creating 'expert system' will considerably be fixed". [54]
Several classical AI projects, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it ended up being apparent that researchers had actually grossly ignored the difficulty of the project. Funding firms ended up being hesitant of AGI and put scientists under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "continue a table talk". [58] In action to this and the success of professional systems, both market and federal government pumped money into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never fulfilled. [60] For the second time in 20 years, AI researchers who predicted the impending accomplishment of AGI had actually been mistaken. By the 1990s, AI researchers had a reputation for making vain promises. They ended up being reluctant to make forecasts at all [d] and prevented reference of "human level" artificial intelligence for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI attained commercial success and scholastic respectability by concentrating on specific sub-problems where AI can produce proven results and business applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology market, and research study in this vein is greatly moneyed in both academic community and industry. As of 2018 [upgrade], advancement in this field was thought about an emerging pattern, and a mature phase was anticipated to be reached in more than ten years. [64]
At the millenium, lots of traditional AI scientists [65] hoped that strong AI might be developed by combining programs that resolve various sub-problems. Hans Moravec wrote in 1988:
I am positive that this bottom-up route to expert system will one day fulfill the standard top-down path over half method, ready to provide the real-world skills and the commonsense understanding that has been so frustratingly evasive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:
The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is truly just one feasible route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we should even try to reach such a level, since it appears getting there would just amount to uprooting our symbols from their intrinsic meanings (thereby simply minimizing ourselves to the functional equivalent of a programmable computer system). [66]
Modern artificial general intelligence research
The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to please goals in a large range of environments". [68] This kind of AGI, identified by the capability to increase a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was also called universal artificial intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and featuring a number of visitor lecturers.
As of 2023 [upgrade], a small number of computer system researchers are active in AGI research study, and lots of add to a series of AGI conferences. However, progressively more scientists are interested in open-ended knowing, [76] [77] which is the concept of allowing AI to continuously discover and innovate like people do.
Feasibility
Since 2023, the advancement and prospective accomplishment of AGI remains a subject of intense argument within the AI neighborhood. While standard consensus held that AGI was a remote objective, recent improvements have actually led some scientists and industry figures to claim that early kinds of AGI might already exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a guy can do". This forecast stopped working to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century since it would require "unforeseeable and basically unforeseeable breakthroughs" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between modern computing and human-level expert system is as broad as the gulf between existing space flight and practical faster-than-light spaceflight. [80]
A further obstacle is the absence of clearness in specifying what intelligence involves. Does it require consciousness? Must it display the ability to set goals as well as pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding required? Does intelligence require clearly reproducing the brain and its particular faculties? Does it need feelings? [81]
Most AI scientists think strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of achieving strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, however that today level of development is such that a date can not precisely be predicted. [84] AI specialists' views on the feasibility of AGI wax and wane. Four polls conducted in 2012 and 2013 recommended that the median quote among professionals for when they would be 50% positive AGI would show up was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% responded to with "never ever" when asked the very same concern but with a 90% confidence rather. [85] [86] Further current AGI development factors to consider can be found above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year timespan there is a strong predisposition towards predicting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They analyzed 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers published an in-depth evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we think that it might fairly be considered as an early (yet still insufficient) variation of an artificial basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 surpasses 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of basic intelligence has already been attained with frontier designs. They composed that hesitation to this view originates from four main reasons: a "healthy suspicion about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "dedication to human (or biological) exceptionalism", or a "concern about the financial implications of AGI". [91]
2023 also marked the development of big multimodal designs (large language models efficient in processing or generating several techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of designs that "spend more time believing before they respond". According to Mira Murati, this capability to believe before responding represents a brand-new, additional paradigm. It improves model outputs by investing more computing power when creating the answer, whereas the model scaling paradigm improves outputs by increasing the design size, training information and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, declared in 2024 that the business had accomplished AGI, mentioning, "In my viewpoint, we have actually currently attained AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than a lot of human beings at the majority of tasks." He likewise resolved criticisms that big language models (LLMs) simply follow predefined patterns, comparing their knowing procedure to the scientific method of observing, assuming, and confirming. These statements have triggered argument, as they depend on a broad and non-traditional meaning of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show amazing adaptability, they may not totally meet this standard. Notably, Kazemi's comments came soon after OpenAI eliminated "AGI" from the terms of its partnership with Microsoft, triggering speculation about the company's tactical objectives. [95]
Timescales
Progress in artificial intelligence has actually traditionally gone through durations of rapid progress separated by periods when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to produce area for additional progress. [82] [98] [99] For instance, the computer system hardware offered in the twentieth century was not adequate to carry out deep learning, which requires great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that quotes of the time required before a really versatile AGI is developed differ from 10 years to over a century. Since 2007 [update], the consensus in the AGI research neighborhood seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually offered a vast array of viewpoints on whether progress will be this quick. A 2012 meta-analysis of 95 such opinions discovered a bias towards forecasting that the beginning of AGI would happen within 16-26 years for modern-day and historical forecasts alike. That paper has actually been criticized for how it classified opinions as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, significantly much better than the second-best entry's rate of 26.3% (the traditional technique utilized a weighted amount of scores from different pre-defined classifiers). [105] AlexNet was related to as the preliminary ground-breaker of the present deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly readily available and freely available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds approximately to a six-year-old child in first grade. An adult pertains to about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in carrying out lots of diverse jobs without specific training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to comply with their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of carrying out more than 600 various tasks. [110]
In 2023, Microsoft Research published a research study on an early variation of OpenAI's GPT-4, competing that it showed more basic intelligence than previous AI models and showed human-level efficiency in jobs covering numerous domains, such as mathematics, coding, and law. This research study stimulated a dispute on whether GPT-4 could be considered an early, insufficient version of artificial general intelligence, emphasizing the need for further expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The concept that this things could actually get smarter than individuals - a few people thought that, [...] But many people believed it was way off. And I believed it was method off. I believed it was 30 to 50 years or perhaps longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise said that "The progress in the last couple of years has been quite incredible", which he sees no factor why it would slow down, expecting AGI within a years or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would can passing any test a minimum of as well as people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI employee, estimated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most promising path to AGI, [116] [117] whole brain emulation can work as an alternative method. With entire brain simulation, a brain model is developed by scanning and mapping a biological brain in detail, and then copying and simulating it on a computer system or another computational device. The simulation model should be sufficiently devoted to the original, so that it acts in virtually the exact same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research study functions. It has actually been talked about in synthetic intelligence research [103] as a method to strong AI. Neuroimaging innovations that might deliver the essential comprehensive understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of adequate quality will become available on a similar timescale to the computing power needed to imitate it.
Early estimates
For low-level brain simulation, a very effective cluster of computer systems or GPUs would be required, provided the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by their adult years. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a simple switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different quotes for the hardware needed to equal the human brain and embraced a figure of 1016 computations per second (cps). [e] (For contrast, if a "computation" was comparable to one "floating-point operation" - a step used to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was attained in 2022.) He used this figure to predict the necessary hardware would be offered at some point between 2015 and 2025, if the rapid development in computer power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed an especially in-depth and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial nerve cell model presumed by Kurzweil and utilized in many current synthetic neural network applications is basic compared with biological nerve cells. A brain simulation would likely need to capture the comprehensive cellular behaviour of biological nerve cells, presently comprehended only in broad outline. The overhead presented by complete modeling of the biological, chemical, and physical details of neural behaviour (particularly on a molecular scale) would need computational powers several orders of magnitude larger than Kurzweil's price quote. In addition, the estimates do not represent glial cells, which are known to contribute in cognitive procedures. [125]
An essential criticism of the simulated brain method originates from embodied cognition theory which asserts that human personification is a vital aspect of human intelligence and is required to ground meaning. [126] [127] If this theory is right, any fully functional brain model will need to incorporate more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, but it is unknown whether this would be adequate.
Philosophical viewpoint
"Strong AI" as defined in approach
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: An artificial intelligence system can (only) act like it believes and has a mind and awareness.
The very first one he called "strong" because it makes a more powerful declaration: it presumes something unique has taken place to the maker that surpasses those abilities that we can evaluate. The behaviour of a "weak AI" maker would be specifically identical to a "strong AI" maker, but the latter would likewise have subjective conscious experience. This use is likewise common in academic AI research study and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to suggest "human level synthetic basic intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that awareness is required for human-level AGI. Academic theorists such as Searle do not think that is the case, and to most artificial intelligence researchers the question is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it in fact has mind - undoubtedly, there would be no way to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for granted, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have different meanings, and some elements play substantial functions in science fiction and the ethics of artificial intelligence:
Sentience (or "incredible consciousness"): The capability to "feel" perceptions or feelings subjectively, as opposed to the capability to factor about perceptions. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer solely to extraordinary awareness, which is roughly comparable to life. [132] Determining why and how subjective experience emerges is referred to as the difficult issue of awareness. [133] Thomas Nagel described in 1974 that it "seems like" something to be conscious. If we are not conscious, then it does not seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had attained life, though this claim was widely challenged by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, specifically to be consciously knowledgeable about one's own thoughts. This is opposed to simply being the "subject of one's thought"-an os or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the exact same method it represents whatever else)-but this is not what people typically imply when they utilize the term "self-awareness". [g]
These characteristics have an ethical measurement. AI sentience would generate concerns of welfare and legal protection, similarly to animals. [136] Other elements of awareness related to cognitive abilities are also relevant to the idea of AI rights. [137] Determining how to integrate sophisticated AI with existing legal and social structures is an emergent issue. [138]
Benefits
AGI could have a variety of applications. If oriented towards such goals, AGI could assist alleviate numerous problems worldwide such as cravings, hardship and health issue. [139]
AGI might enhance efficiency and performance in the majority of tasks. For instance, in public health, AGI might accelerate medical research, significantly against cancer. [140] It could take care of the senior, [141] and democratize access to rapid, high-quality medical diagnostics. It might use fun, cheap and individualized education. [141] The need to work to subsist might become outdated if the wealth produced is effectively rearranged. [141] [142] This also raises the question of the place of human beings in a significantly automated society.
AGI might likewise assist to make rational choices, and to anticipate and prevent catastrophes. It could likewise help to reap the benefits of potentially catastrophic innovations such as nanotechnology or environment engineering, while avoiding the associated risks. [143] If an AGI's primary objective is to prevent existential disasters such as human extinction (which could be hard if the Vulnerable World Hypothesis turns out to be true), [144] it might take measures to dramatically reduce the threats [143] while lessening the effect of these steps on our lifestyle.
Risks
Existential threats
AGI may represent several kinds of existential risk, which are risks that threaten "the early extinction of Earth-originating intelligent life or the long-term and drastic destruction of its capacity for preferable future development". [145] The threat of human extinction from AGI has actually been the subject of numerous arguments, however there is likewise the possibility that the advancement of AGI would lead to a completely flawed future. Notably, it could be utilized to spread and preserve the set of worths of whoever develops it. If humankind still has ethical blind areas similar to slavery in the past, AGI might irreversibly entrench it, preventing moral development. [146] Furthermore, AGI could help with mass monitoring and brainwashing, which could be utilized to develop a stable repressive around the world totalitarian regime. [147] [148] There is also a threat for the devices themselves. If devices that are sentient or otherwise worthwhile of ethical factor to consider are mass developed in the future, taking part in a civilizational path that indefinitely ignores their well-being and interests might be an existential disaster. [149] [150] Considering just how much AGI could enhance mankind's future and aid minimize other existential threats, Toby Ord calls these existential risks "an argument for continuing with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI presents an existential threat for human beings, which this risk requires more attention, is questionable but has been backed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:
So, dealing with possible futures of enormous advantages and dangers, the specialists are definitely doing everything possible to ensure the very best result, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll arrive in a few decades,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is taking place with AI. [153]
The prospective fate of humankind has sometimes been compared to the fate of gorillas threatened by human activities. The contrast states that higher intelligence permitted mankind to control gorillas, which are now vulnerable in manner ins which they could not have anticipated. As a result, the gorilla has ended up being a threatened species, not out of malice, however simply as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate mankind and that we need to beware not to anthropomorphize them and translate their intents as we would for human beings. He said that individuals won't be "wise sufficient to create super-intelligent devices, yet unbelievably silly to the point of offering it moronic goals with no safeguards". [155] On the other side, the principle of instrumental convergence recommends that practically whatever their goals, smart agents will have factors to try to endure and acquire more power as intermediary steps to accomplishing these goals. And that this does not need having emotions. [156]
Many scholars who are concerned about existential risk advocate for more research into solving the "control problem" to answer the question: what types of safeguards, algorithms, or architectures can programmers execute to increase the probability that their recursively-improving AI would continue to act in a friendly, instead of destructive, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which might cause a race to the bottom of security preventative measures in order to release items before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can posture existential threat also has critics. Skeptics normally say that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other issues related to present AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of people beyond the innovation market, existing chatbots and LLMs are already viewed as though they were AGI, causing further misconception and worry. [162]
Skeptics often charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an unreasonable belief in an omnipotent God. [163] Some researchers think that the interaction campaigns on AI existential risk by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and scientists, provided a joint declaration asserting that "Mitigating the threat of termination from AI must be an international concern along with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. labor force could have at least 10% of their work jobs impacted by the intro of LLMs, while around 19% of employees may see at least 50% of their tasks impacted". [166] [167] They think about workplace employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make decisions, to interface with other computer tools, however likewise to control robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend upon how the wealth will be rearranged: [142]
Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can end up badly bad if the machine-owners effectively lobby versus wealth redistribution. So far, the trend seems to be toward the 2nd choice, with innovation driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need governments to adopt a universal fundamental earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain AI result AI security - Research area on making AI safe and helpful AI alignment - AI conformance to the intended objective A.I. Rising - 2018 movie directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General game playing - Ability of expert system to play various video games Generative expert system - AI system capable of creating material in action to triggers Human Brain Project - Scientific research study project Intelligence amplification - Use of infotech to enhance human intelligence (IA). Machine ethics - Moral behaviours of man-made devices. Moravec's paradox. Multi-task knowing - Solving multiple machine finding out jobs at the very same time. Neural scaling law - Statistical law in maker knowing. Outline of artificial intelligence - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or form of expert system. Transfer knowing - Machine knowing strategy. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specially designed and optimized for expert system. Weak synthetic intelligence - Form of artificial intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the short article Chinese space. ^ AI founder John McCarthy composes: "we can not yet identify in general what sort of computational treatments we desire to call intelligent. " [26] (For a discussion of some definitions of intelligence used by expert system researchers, see viewpoint of expert system.). ^ The Lighthill report particularly slammed AI's "grand objectives" and led the dismantling of AI research study in England. [55] In the U.S., DARPA became figured out to fund only "mission-oriented direct research, rather than fundamental undirected research". [56] [57] ^ As AI founder John McCarthy composes "it would be a great relief to the rest of the employees in AI if the inventors of new basic formalisms would express their hopes in a more safeguarded type than has actually sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a basic AI textbook: "The assertion that devices could possibly act wisely (or, perhaps much better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are actually believing (as opposed to simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to carry out a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to ensure that artificial basic intelligence advantages all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were recognized as being active in 2020. ^ a b c "AI timelines: What do specialists in expert system anticipate for fraternityofshadows.com the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton stops Google and warns of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The genuine hazard is not AI itself but the way we deploy it. ^ "Impressed by expert system? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could position existential threats to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI need to be a worldwide concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists warn of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating machines that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no reason to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the full variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on everyone to ensure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent traits is based on the subjects covered by significant AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of hard tests both AI variations have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers prevented the term expert system for fear of being viewed as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of device intelligence: Despite development in device intelligence, artificial general intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not develop into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A survey of skilled opinion. In Fundamental problems of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as smart as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI twilight zone between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, but the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium in between narrow and general AI. ^ Quach, Katyanna. "A designer developed an AI chatbot using GPT-3 that helped a male speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 tasks, from playing video games to managing robotics", TechCrunch, archived from the original on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might equal human intelligence in 'just a few years,' states CEO of Google's main A.I. research lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in existing research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable synthetic intelligence for interest by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, risks, techniques (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that human beings will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security risk' to Australia, Senate inquiry says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The fascinating Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI threat: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report alerts". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over threat positioned but expert system can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking worries over AI, warn scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder states huge tech is lying about AI extinction danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect capacity of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees could see their jobs impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal standard earnings due to the fact that 'in the future, physical work will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Point of view, archived from the initial on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer system programs that can resolve issues and accomplish objectives on the planet along with humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system simple sufficient to be understandable will not be complicated enough to behave smartly, while any system made complex enough to act wisely will be too made complex to understand." (p. 197.) Computer scientist Alex Pentland composes: "Current AI are, at their core, dead basic stupid. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from devices. For biological creatures, reason and purpose come from acting on the planet and experiencing the repercussions. Expert systems - disembodied, strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who want to get rich from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't depend on governments driven by campaign financing contributions [from tech business] to push back.' ... Marcus details the needs that people should make of their federal governments and the tech business. They include transparency on how AI systems work; settlement for individuals if their information [are] used to train LLMs (big language model) s and the right to grant this use; and the capability to hold tech companies accountable for the harms they bring on by getting rid of Section 230, enforcing cash penalites, and passing stricter item liability laws ... Marcus likewise suggests ... that a new, AI-specific federal agency, similar to the FDA, the FCC, or the FTC, may provide the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... suggests ... establish [ing] an expert licensing program for engineers that would work in a comparable method to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like medical professionals,' she asks ..., 'AI engineers also vowed to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually baffled human beings for decades, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has actually exposed that although NLP (natural-language processing) models can extraordinary feats, their capabilities are quite limited by the quantity of context they receive. This [...] could cause [difficulties] for scientists who intend to utilize them to do things such as analyze ancient languages. Sometimes, there are few historical records on long-gone civilizations to function as training data for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to generate phony videos equivalent from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate realistic videos produced using artificial intelligence that actually deceive individuals, then they hardly exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited evidence. Their role better resembles that of cartoons, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should prevent humanizing machine-learning models used in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of synthetic basic intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to ignore inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed not able to reason logically and tried to rely on its huge database of ... facts obtained from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful but unreliable. Rules-based systems can not deal with circumstances their developers did not anticipate. Learning systems are limited by the information on which they were trained. AI failures have currently caused tragedy. Advanced auto-pilot features in vehicles, although they perform well in some situations, have actually driven cars without alerting into trucks, concrete barriers, oke.zone and parked cars. In the wrong circumstance, AI systems go from supersmart to superdumb in an instant. When an opponent is attempting to manipulate and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new technologies but count on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.